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A new method to Iind solutions of large linear systems, based on a projection on the Krylov 
subspace, is shown to be successful when applied to the linearized barotropic and baroclinc 
primitive equations. These sets of equations are widely used in the simulation of the dynamics 
of the atmosphere. The scheme consists of projecting the original linear system on the Krylov 
subspace, thereby reducing the dimensionality of the matrix to be inverted in order to obtain 
the solution. The iterative Arnoldi’s method reaches a solution even using a Krylov subspace 
ten times smaller than the original space of the problem. This generality allows us to treat the 
important problem of propagation of linear waves in the atmosphere from a more general 
point of view. A larger class (nonzonally symmetric) of basic states can now be treated for the 
baroclinic primitive equations. These kinds of problems leading to large unsymmetrical linear 
system of order 10000 or more can now be successfully tackled by the Krylov approach. 
Numerical results of a General Circulation Model, linearized around a nonsymmetrical basic 
state, are here shown for various numbers of degrees of freedom, 1 19X7 Academic Press. Inc 

1. INTRODUCTION 

The effects of external forcings on large scale atmospheric circulation has been an 
interesting and important subject in dynamic meteorology. In the late 1970s there 
has been a resurgence of interest for the linearized approach to the problems; a 
number of investigators have found that stationary weve propagation derived from 
linear models yields a considerable insight into the dynamics of circulation. 

For meteorological application two-dimensional and three-dimensional systems 
are used. In the former case only the Navier-Stokes equations on a spherical sur- 
face are considered. The fluid is supposed horizontally nondivergent, and ther- 
modynamical effects are ignored. This is called a barotropic system. In the latter 
case the Navier-Stokes equations for a fluid of finite thickness on the sphere are 
used. To close the system the thermodynamics and continuity equations are added 
and the hydrostatic approximation is made. This system is called the primitive 
equations system or, briefly, the baroclinic system. A quite comprehensive list of 
references of linear studies in this framework may be found in Held [19]. 

* Present address: Institute IMGA-CNR, Via Campi, 213/A, 41100 Modena, Italy. 

143 
0021-9991/87 $3.00 

581’69 I-10 
Copyright :(‘: 1987 by Academic Press, Inc. 

All rrghts 01 reproducflon in any form reserved 



144 A. NAVARRA 

These kinds of models are usually linearized around a basic state that varies only 

in the latitudinal direction for the barotropic case and in both the vertical and 
latitudinal directions for the baroclinic case. The equations become separable in one 
variable, the longitude, and so the solution can be expressed as a Fourier series in 
terms of longitudinal waves. The equations are then solved for each longitudinal 
wavenumber. The numerical methods developed for these cases involve the reduc- 
tion of the equations to a matrix form. An analytical calculation of matrix elements 
is presented by Lindzen and Kuo [ 111, that was also used by Simmons [ 171 and 
Nigam [13], while Hoskins and Karoly [9] used a spectral General Circulation 
Model (GCM) to compute the elements of the matrix without computing the 
interactions analytically. The size of the matrix to be inverted for each wavenumber 
was on the order of a few hundreds. All of these examples included the solution of a 
large, sparse, matrix (block diagonal in the wavenumber representation) and in all 
cases only direct methods, based on Gaussian elimination, were used. 

The time-mean state of the real atmosphere is, however, far from being indepen- 
dent of longitude, so it is natural to try to remove this limitation from the 
assumptions for the basic flow. However, by doing so we lost the advantage of the 
block-diagonal symmetry. The matrix is not sparse any more and we cannot treat 
each wavenumber separately. Yet the barotropic case is still treatable without a 
special consideration, as Branstator [3] and Navarra and Miyakoda [12] did. 
Even some baroclinic case is treatable if an approximate version of system 
(2.3))(2.6) such as the quasigeostrophic system, is used (as in Federiksen [6]). 
However, this is not the case for the primitive equations. The order of the matrix, 
for a linear model of resolution comparable with that of a low resolution spectral 
GCM, may exceed 10000. Direct methods are impractical and even storage of the 
matrix is difficult. If a finite-difference numerical scheme is used the matrix may 
have a sparse structure, but if a spectral representation is used the sparseness is 
generally lost. In general, the matrix is expected to be unsymmetrical and, possibly, 
indefinite. Direct methods are ruled out because of the difficulty of computing and 
storing the elements of the matrix. By the same token, iterative methods that 
involve simultaneous operations on the elements of the matrix have to be excluded. 
The situation also precludes pre-conditioning methods since it is difficult to con- 
struct a pre-conditioning operator in compact form. 

What we present here is an application of a method belonging to the class of 
algorithms based on oblique projections on a Krylov subspace, the Arnoldi’s 
method. The algorithm is originally due to Saad [ 161 and what is described here is 
its application to the barotropic and baroclinc case. One feature that makes this 
algorithm very suitable for a geophysical application is that the matrix A need not 
be computed explicitly. In this algorithm only the vectors Ax are needed in the con- 
struction of the Krylov subspace. As we will see in the following this operation may 
be performed numerically by using a linearized version of a Global Circulation 
Model. Section 2 will describe the physical models and the details of the numerical 
representation. Section 3 will describe Arnoldi’s method, and Section 4 will present 
the results of the numerical experiments. 
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2. THE PHYSICAL EQUATIONS 

We will take two kinds of problems. The first one is described by the non- 
divergent barotropic equation for the two-dimensional flow on a rotating sphere, 
viz. 

~(i,+v.(vi+ll)=F(d,1)-~‘r-Tr_ (2.1) 

where [ is the vertical component of the relative vorticity; V is the horizontal 
gradient operator in spherical coordinates; F is an external prescribed forcing; 
v = (u, u), is the horizontal velocity vector, and f is the Coriolis parameter defined 
as 252 sin 4, Sz is the earth angular velocity and 4 is the latitude. For the linearized 
case to be discussed in the following, the dissipation terms already written for com- 
pleteness in (2.1), become important. The basic flow used in the linear equations 
includes zero wind lines that need to be treated with the inclusion of small scale dis- 
sipation, -KV2[; also, the generation of wave trains so long that could return back 
to the forcing region, causing a resonance, is to be avoided by damping the waves 
with a -EC term, as in [S]. Since the flow is assumed horizontally non divergent 
(V v = 0), it is possible to define a streamfunction II/, such that 

so that Eq. (2.1) may be written 

$ (v’$) + J($, V’$ +,f’) = F- KV411/ -cV2t+k (2.2) 

where J($, V’$) is the Jacobian operator in spherical coordinates 

Problems involving finite-difference representations of Jacobians arising in ODE 
codes have also been considered by Gear and Saad [20]. 

In the second problem, we consider a system of equations which is normally used 
in numerical weather prediction. This set of equations represents a three-dimen- 
sional compressible fluid on a rotating sphere, driven by heating. The model is 
based on the “transform” spectral technique. Bourke [ 1, 23 developed this model 
for the barotropic and for the baroclinc case. However, the particular model used in 
this paper is the GCM built by Gordon and Stern [7] and, therefore, we will 
follow their description of the essential parts of the procedure. 
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First, the set of equations is written in terms of vorticity [, divergence D, tem- 
perature T and logarithm of surface pressure y = log(p,,), using as vertical coor- 
dinate the normalized pressure 0 = p/p,, 

i’i 
L= -V+xS)-K,V4<, 
(7t (2.3) 

i?D 
x=V.(S)-V’(E+d,)-K,V4D, (2.4) 

(2.5 

(2.6 

(2.7 

6= -I0 (D-z,)&- i‘” (v-i).Vqdo, (2.8 
_ 0 - 0 

ad RT 

c?a cl ’ 
(2.9 

EJz42+l.2) 
2 * 

(2.10 

S= -(<+,f)kxv-d- RTVy. 
?a 

(2.1 I 

Here o is the vertical pressure velocity, d the geopotential, R the gas constant, c,, 
the specific heat capacity at costant pressure, R the vertical unit vector, 

( - ) = j,; . &J 

the vertical average operator, Q the heating. The heating Q is the only forcing of 
the system; in the following, we will be interested only in the case when Q is a 
prescribed function independent of time, but otherwise unrestricted. 

Vertical derivatives are treated by finite-differencing so that the variables 
([, D, T, q) are specified at discrete levels. Boundary conditions are applied at the 
bottom and the top of the atmosphere as 8 = 0. The variables are then expressed in 
terms of spherical harmonics at each level. Vorticity, for instance, is written 

i= i ‘y” (KY cos(m~) + (<;;)‘sin(mA)) P;(cos fj). (2.12) 
m=O ,,=Jml 
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The parameter J describes the order of the truncation and is therefore a measure of 
the total number of degrees of freedom in the system. Substituting the spherical har- 
monics expansion in (2.1) or (2.3))(2.11) and projecting variables on the spherical 
harmonics, we obtain a system of ordinary differential equations for the spherical 
harmonic coefticients, that can be written symbolically as 

.t = N(x) +,I: (2.13) 

The vectors .Y, ,f’ represent the spherical harmonic coefficients for all variables and 
the heating function at all levels. N is a symbolic writing for the nonlinear operator 
on the r.h.s. of (2.3))(2.6). The equations are then simplified by linearizing (2.13) 
around a certain time-independent basic state. It is necessary to postulate a forcing 
f that makes the basic state s a solution of the full stationary equation N(x) =r 
Dissipation, in the form of Rayleigh friction -c(o)(i, D) and Newtonian cooling 
-:(a)T is usually added to account for ground dissipation and for radiation 
cooling. Small scale dissipation is also included as a V4 term for vorticity, 
divergence and temperature. 

The equations for the perturbation X’ can then be written 

.t = L,(d) - f”‘. (2.14) 

where L is the spectral representation of a linear differential operator with variable 
coefficients that depend on the basic state. The expression of L in continuous form 
is given in the Appendix. 

The stationary equation is now obtained by setting the time derivative term in 
(2.14) to zero. Dropping primes one obtains 

whose numerical representation is given by a real matrix equation 

As = ,f: (2.15) 

Equation (2.15) is the basic equation to which the Krylov subspace method will 
be applied. 

The problem is now reduced to solving a linear system whose order is given 
by the total number of variables, namely the total number of independent 
spherical harmonic coefficients. According to relation (2.12) there are 2(J + 1) 
real coefficients for each m #O and since there are three variables ([, D, 7') 
with vertical dependence expressed at K vertical levels, and one two-dimensional 
variable q, the total length of the block for a certain wavenumber m is given by 
2(J+ 1)(3K + I), where K is the total number of vertical levels in the model, i.e., 
K = 9. The zonal block (m = 0) is special because these coefficients are only (Jt 1) 
and (ii),, (Di), , qi are not considered. The length of the m = 0 block is 
therefore (J+ 1)(3K + 1) - 2K- 1. If the vector x is ordered by wavenumber 
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m, x = (a”‘, c((‘) ,..., CC(~) ,..., a(-‘)) where LX(~) are the coefficients for all variables and 
levels corresponding to wavenumber m, then the structure of A will be 

where the diagonal block A,,,, describes the effect of the wavenumber m = 0 of the 
basic state onto the wavenumber J of the perturbation. In the sonally symmetric 
case considered by other authors A,,,,,. =0 for m #m’, so the matrix is block- 
diagonal. In the case considered here A,,,. # 0 for all m, m’, even if some of the 
elements are small. The matrix is not sparse and it is not banded. It is not known to 
be diagonally dominant, but the dissipation chosen will project on the diagonal 
elments of each block increasing the chances for diagonal dominancy. 

The total length of the vector x is then obtained by summing over all m 

L=(J+ 1)(3K+ 1)-2K- 1 + i 2m(J+ 1)(3K+ I), 
,,, = I 

i.e., L = (2J + 1 )(J + 1)(3K + 1) - 2K - 1. Table I represents the length of vectors 
for various truncations of the baroclinic spectral model. 

The problem is so large that direct methods are unpractical. Very few iterative 
methods for large nonsymmetrical systems have been developed. Elman 1211 gives 
a review of some of the methods available. Chebyshev iterations [lo] require 
estimates of the bounds on the spectrum of A, and this itself is a rather difficult 
problem in the case treated here. In general these methods converge if the matrix is 
nonsymmetric positive definite, i.e., the real parts of all the eigenvalues are of the 
same sign. A priori, it is not rigorously known if the matrix treated here has this 
property or not. Since the Krylov subspace methods can be applied to the more 
general case, one of them, the Arnoldi’s method, has been selected for this 
application. However, in the indefinite case convergence is not proved and the 
algorithm may break down [22]. In general, A will be only known implicitly 
through the finite difference or the spectral representation of the operator L,. As it 
will be discussed in detail in the following, the Krylov subspace method does not 
require explicitly the elements of A. In fact, no operation on them is needed by the 
algorithm, only the result of the transformation I --f 2 = A.u is used in the procedure. 
So, for a given x, Ax is easily accessible, but A itself is not. In this case, the 
calculation of Ax has been accomplished by using a linearized version of the spec- 
tral model by Gordon and Stern 171. 

TABLE I 

Truncation order J 1 3 I 15 

Dimension of A 149 765 3341 13869 
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3. THE ARNOLDI'S METHOD 

Originally, the concept of the Krylov suspace was developed by Krylov ([ 101. 
for an English treatment see Faddeva, [ 5 I] ) and Arnoldi [ 1 S] as a way to find the 
eigenvalues and the eigenvectors of a matrix. Only recently it has been pointed out 
that algorithms based on the Krylov subspace idea are very powerful tools to find 
approximations of eigenelements of large nonsymmetrical matrices (Saad [ 151; 
Ruhe [ 141) and that such algorithms may be applied to the solution of large, non- 
symmetrical, linear systems as well (Saad [22, 161). The latest approach is the one 
that we have used in the application of this paper. 

Let us consider a linear equation 

Ax = ,f; (3.1) 

where A is a matrix of order n, and X, ,f’ are vectors of length n. The solution x to 
the equation has to be found among all the n-dimensional vectors belonging to the 
vector space R”. The matrix A itself is to be considered as a linear transformation 
on the elements of the vector space. 

To illustrate the Arnoldi method, let us assume the orthonormal basis in R”, 
CT= (u, , Us,.... u,,) and perform a change of coordinate so that in the new coordinate 
system equation (3.1 ) will be 

U’AUh = U’,f; (3.2) 

where the matrix UT denotes the transpose of the orthogonal matrix U. Therefore 

h=jU’AU)-‘UTj (3.3) 

the solution is then given by 

.Y= Uh=h,u, +hzu,+ ..’ +h,,u,,. (3.4) 

In general, a change in coordinates does not give much advantage site Eq. (3.2) still 
require finding II coefficients. The question is whether it is possible to find a special 
coordinate system in which many of the h’s are identically zero, and so only a 
smaller number, say m, of coefficients are sufficient to reconstruct the solution of 
the original system. In practice, many of the h’s are small and we can neglect them 
without appreciably affecting the precision of the solution. The Arnoldi method 
provides an algorithm that yields such a basis, reducing the problem to finding only 
In coefficients instead of n. 

Following Saad [16] we will try to sketch the essential points of the algorithm. 
Defining the Krylov subspace by V= (L’,,, Au,,..., A’+ It)“) and an initial guess by 
.Y(“‘, we want to find an approximate solution of Ax = f of the form .y(‘) = ,xJ’) + y”’ 
where ~1” ) E Span( V), or y “I = VL.(‘). The coefficients c are obtained by solving the 
Galerkin condition 

V’A Vc (II= vT,.‘O’, 
(3.5) 
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where r(O) = Ax”’ -J We can see from (3.5) that though u. is in principle arbitrary, 
the choice u. = Y(O) is convenient. 

If the solution is not accurate enough, then a larger value of rn must be used. It 
may happen that even with the largest m allowed by the computing system the 
precision of the solution is still not satisfactory. In this case the method can be 
made iterative. We set 

(3.6) 

and form another Krylov subspace with u,) = Y “I to obtain another Galerkin con- 
dition for y”’ 

VT/~ ~~“1 = VT,,” 1 

,p = vp 

and so on. In practice, it is not necessary to perform the matrix multiplications to 
get VTAV. The Arnoldi’s algorithm provides the elements of an approximate 
representation of VT,4 V that has the structure of a Hessenberg matrix. In fact, using 
the Arnoldi’s algorithm one can build an orthonormal basis V’= (u, , c’*,..., u,,,) of 
the Krylov subspace, K, in the following way. For the first element u, , 

for the second element t’? 

for the third element uj 

and so on. In general we write 

M?= Au,- i h,v,, 
i= 1 

(3.7) 
W 

ui+,=- 
h ’ /+ 1.1 
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where 

h, = (Au,, L’,) for i < ,j, 

h ,+ I., = /I~4 for j= l,..., m. 
(3.8) 

We have indicated with (., .) the scalar product in R” and with //./I the norm 
associated with it. 

The operator VT,4 V is the restriction of the matrix A to the m-dimensional 
Krylov space K. Since V forms an orthonormal set it is not diflicult to show the 
following relation 

A V = VH + h, + 1.m l’,,, + , r; > (3.9) 

where we have denoted by ezj the mth row of the identity matrix I in m dimensions 
and H is the Hessenberg matrix whose coefficient are the h,, defined by (3.8). It is 
an approximation to VTA V and so we can solve, instead of (3.5) 

Hc - (1) _ vT,.Ul (3.10) 

that together with I”‘) = Vc”‘, yields an approximate solution to (3.1). Equation 
(3.10) is an equation for c”), i.e., an m-dimensional vector, and so we have reduced 
the size of the linear system from n to m. Since H is a Hessenberg matrix only 
n(n + 1)/2 + (n - 1) elements are needed to store it in memory. Furthermore a very 
efficient row-wise Gaussian elimination, particularly suitable for vector processors, 
may be implemented to solve system (3.10). 

Note that (3.7) and (3.8) imply that h,,,+ ,,,,,, will be zero if the vector Au,,, is 
linearly dependent on the preceeding v, ,..., LI ,,,, vectors in the sequence (3.7). When 
this happens then A V= VH, and (3.10) gives the exact solution of (3.1). In practice 
the loss of linear independence will take place gradually, and the solution of 
Eq. (3.10) gives approximate solutions to (3.1). 

The term h,,, + l.ljl will be zero in exact arithmetic if m is equal to n. The important 
factor is the speed of the convergence. General conclusions on the speed are difficult 
to obtain. Saad [ 15, 161 gives estimate for special distributions of the eigenvalues of 
the matrix A. The effectiveness of this approach is somewhat limited by the fact 
that, for large problems, the size of the Krylov subspace (i.e., m) is limited by a par- 
ticular computer capacity and even for the largest possible m, the attained precision 
may not be satisfactory. The remedy is to make the calculation scheme iterative, as 
it has been described earlier. The iteration as it has been set up in (3.6) is not a 
stationary iterative scheme, since the matrix VTA V changes at each iteration. The 
starting vector for the construction of the Krylov space determines the matrix for 
that iteration. No general results for the convergence of this scheme are available. 
In the nonsymmetric positive definite case convergence has been observed 
experimentally. 

It can be shown that the Krylov subspace method reduces to an algorithm that is 
very close to Richardson’s scheme if the Krylov subspace is very small. In general 
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the larger the Krylov subspace, the better, since the convergence is faster at large m. 
For marginal problems (m % n) the projection part is more important and so a 
good precision may be achieved even with only one iteration. For very large matrix 
problems, the ratio m/n becomes small (less than 0.1) and then the iteration 
becomes important. It is interesting to note that the iteration (3.8) is not optimal. 
In fact, at each iteration we construct a Krylov space that is different from the 
previous ones, but it is not orthogonal to them. Therefore the corrections we are 
getting at each step are not optimum. 

4. NUMERICAL EXPERIMENTS 

As a first example, the Krylov method is applied to the barotropic equation (2.1) 
linearized around an asymmetric basic state, obtained by a previous long-term 
integration of the full nonlinear equation (2.1). The model is an hemispheric, spec- 
tral model, with resolution J= 15. The dimension of the equivalent matrix, i.e., the 
number of unknowns, is 248. 

The convergence will be monitored by testing the residual norm of the 
approximate solution given at each iteration by 

Small values of RtT mean that the solution is not changing much from one 
iteration to another. This residual can slightly underestimate the correctness of the 
solution because it gives the same weight to large and small component of X. In 
other words, it is a criterion that test the solution uniformly, regardless of the 
magnitude of the various components. Nonetheless, R is the convergence indicator 
that will be used throughout this section. 

The calculations have been performed on the CDC 20.5 system at the 
Geophysical Fluid Dinamics Laboratory, Princeton, NJ, in single precision, with a 
48 bits mantissa. The orthogonal vector system V is stored on disk, but everything 
else is core-contained. 

In Fig. 1, R’* is plotted as the algorithm develops for the barotropic case. The 
coefficient of dissipation used here is K= 4 x lo6 m’ set ‘, and E = 15 day ‘. In the 
abscissa is the total number of steps, defined to be the product of the dimension of 
the Krylov subspace m, by the number of the iteration N. All experiments, except 
the case labeled A, have zero as an initial guess. The convergence is quite good. It is 
clear, however, that the best convergence rates are attained for large m/n ratios, 
where n is the dimension of the total problem, i.e., 248. Below a certain threshold 
the rate is not sensitive much to m; in the m = 32 and m = 15 cases speeds are very 
similar. The experiment A is for random initial guess. It converges slower than the 
companion experiment with the same m, but with zero initial guess. 
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FIG. I. Barotropic, nonseparable case. Convergence of the Krylov method for the barotropic 
equation. R” is plotted in logarithmic scale as a function of the total number of steps, defined as the 
product of the dimension of the Krylov space rn and the iteration number N,,. This format will be the 
same for all the remaining convergence figures. In this case n = 248. Various sizes of the Krylov subspace 
are used. Experiment A has m = 32 and randomly chosen initial guess. Experiments B. C, D are for 
jr!= 15, HI = 31, and nr = 62. respectively, and zero initial guess. 

In the next examples we are going to discuss the baroclinic primitive equation 
system (2.21). We can expect from the physical characteristics of this system that it 
is more difficult than the barotropic case. It is known that in the case of a no 
motion, isothermal basic state, the baroclinic equations have eigenvalues that range 
in absolute value over several order of magnitude, from 10 3 (gravity waves) to 
10 ’ (Rossby waves). The more complicated basic state used here should not 
change this situation too much. The barotropic system should have a smaller range 
of eigenvalues and so it should be better conditioned than the baroclinic case. 

The value of the coefficient of the Rayleigh friction I is a linear function of the 
level number, and it goes from 5 day ’ at the botton level to 50 day- ’ at the top 
level. The Newtonian cooling Y(B) is also linear in the level number and it ranges 
from 5 day ’ at the bottom level to 10 day- ’ at the top level. Small scale dis- 
sipation is modeled by the V4 term and it has the same coefficient of 
2.338 x lOI m4 set ’ for vorticity, divergence and temperature. This is the standard 
setting of the friction parameters that is used in most of the following experiments. 
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New values will be explicitly stated where necessary. The forcing on the r.h.s. is 
given by a distribution of heating localized in latitude and longitude 

Q(A, 8, f7) = A sin(ncr) 
i 

sin 
7[(l~-E.,)sina(O-0,) 2 

. 2, 02-0, I 3 1.2 - (4.1) 

where 0 is the vertical coordinate and i., 8 are the longitude and the latitude. 
The basic state used in the first three examples is a solid rotation corresponding 

to a vorticity of 0.4 x 10 - ’ set ’ and a uniform temperature of 173” K which leads 
to separable equations. Next, another separable case is considered, but with a more 
complicated structure. Finally, asymmetric basic states, resulting in non-separable 
equations and therefore in a dense, non-symmetrical A will be treated. 

Figure 2 shows the behavior of the iterations for the baroclinic primitive equation 
model for truncation J= 1 (n = 149). The size of the Krylov space is important in 
controlling the convergence. It is interesting to note that for very small subspace the 
Krylov method tends to the Richardson’s iteration method. It appears that the 
Krylov method is successful where the Richardson’s algorithm would have failed. 
As speculated, the baroclinic case is more difficult than the barotropic one and so 

FIG. 2. Baroclinic, separable case. Convergence of the residual norms for the linearized primitive 
equations (2.15). The truncation is J= 1, n = 149. Different Krylov subspaces are used. Dotted, dashed 
and solid line are for experiments with m = 50, M = 75 and m = 100. 
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the convergence is slower and the residual norms do not reach the extremely small 
values recorded previously. 

The RI system, though representing the simplest nontrivial case, is not going to 
be of great scientific relevance and it is therefore necessary to proceed to higher 
resolution models that represent the basic mathematical tool for a great variety of 
geophysical problems. 

Figure 3 shows the convergence for the R7,9 vertical levels, primitive equation 
model. The solid line is for a zero initial guess, while the dotted line has for initial 
guess a R3 solution obtained previously by a direct method. The choice of a better 
initial guess is beneficial to accelerate the convergence of the solution. In this case 
II = 3341 and r~ = 1000, so that the ratio is 0.3. Finally, in Fig. 4 the result for the 
case of a R15 and 9 level is shown with a ratio m/n z 0.1, since n = 13869. 

As a further test the algorithm was used to reproduce the result by Nigam [ 131, 
using the same heating and mean flow. The spectral model with J= 15 and 9 ver- 
tical levels, for a total number of degrees of freedom n = 13869 was used. 
Eq. (2.3))(2.6) are essentially the set used by Nigam, even if an exact comparison is 
not possible due to the different numerical formulation of the two models. Figure 5 

FIG. 3. Baroclinic, separable case. As in Fig. 2. but for J= 7, n = 3341, m = lG00. Solid line is for 
zero initial guess while the dotted line is an experiment with a low truncation solution, J= 3, as initial 
guess. 
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FIG. 4. Baroclinic. separable case. As in Fig. 2, but for J= IS. n = 13869, nt = 1000. A zero initial 
guess is assumed. 

shows the convergence in this case, where m/n is again ~0.1. The initial guess is a 
J= 7 solution obtained previously by direct methods. After 6 iterations the solution 
is very close to Nigam’s at inspection, and the RIT has dropped an order of 
magnitude. The breaking down of the RIT by wavenumber (not shown) provided 
evidence that the error is larger on the higher longitudinal wavenumbers and 
smaller on the low wavenumber components. In the problem of the general cir- 
culation of the atmosphere, the relevant physical information is carried by the large 
scale pattern corresponding to low wavenumbers. The spectral distribution of RIT 
indicates that the Arnoldi’s method converges faster on the physically relevant low 
wavenumber portion of the solution. 

As a last test with the separable basic states the solution of a J= 7, 9 level model 
obtained with the Krylov method was compared with a solution calculated with a 
LU-decomposition. The former and the latter agreed to 334 decimal places. 

The preceding examples were concerned with separable equations. It is now 
possible to drop the restriction of symmetry in the basic state and attack the non- 
separable set of equations. The basic state used here is obtained by time-averaging a 
set of nonlinear integrations of Eqs. (2.3)(2.11) with truncation J = 15 performed 
with the GFDL spectral model, described by Gordon and Stern [7]. The basic 
state has strong variation both in the vertical and in the horizontal. 
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FIG. 5. Baroclinic, separable case. Convergence for the experiment reproducing Nigam (1983) result. 
The model is a J = I5 with II = 13869. The Krylov space dimension is m = 1000. Initial guess is a low 
truncation solution (J= 7) obtained previously. 

It is necessary to use higher values of dissipation to achieve convergence with the 
size of the Krylov space that we have chosen. m = 1000. Rayleigh friction e(a) and 
Newtonian cooling ~(a) are left with the same functional dependence, but they are 
multiplied uniformly by a factor 3.0 and 2.0, respectively. The V4 coefficient is mul- 
tiplied by a factor 10.0. The physical problem is not altered by this increase. Dis- 
sipation is a model-dependent parameter and values of this size have been used 
before in meteorological studies. The coefficient of the V4 operator has a value close 
to the one used by Grose rt al. [24] and the values of the Newtonian cooling and 
Rayleigh dumping are similar to the values used by Gill [23] in his study of the 
equatorial circulation. They are therefore appropriate in the equatorial areas, but a 
little too strong in the upper troposphere in the midlatitudes. The wavetrains 
emanating from the tropics are then attenuated in their propagation, but they are 
still very well developed. In Fig. 8 it is possible to see how the wave is clearly 
propagating far away from the source and all over the northern hemisphere. 

These values do not represent the threshold for convergence, but rather a prac- 
tical minimum. Below these values the convergence may be very slow. Other 
experiments, not shown, indicate that increasing the dissipation results in faster 
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FIG. 6. Baroclinic, nonseparable case. Convergence of the residual norms of the iterates for the 
Krylov method, for the asymmetric, non separable, basic state. In this case J = 7, II = 3341 and m = 1000. 
The initial guess is irrelevant. 

convergence rate. More study is however needed to clarify completely the role 
played by dissipation in the algorithm. 

Figure 6 shows the convergence for the J= 7 model, 9 level, with a ratio 
m/n * 0.3, since n = 3341. The curve is typical of a set of several such solutions 
obtained with the same basic state, but for different forcings on the right-hand side. 
The forcings were varied by modifying the geographical location of the center of the 
distribution (4.1). The initial guess here is a solution obtained for another forcing. 

FIG. 7. Baroclinic, nonseparable case. As in Fig. 6, but for J = 15, n = 13869, m = 1000 
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FIG. 8. Typical geopotential heigh pattern obtained from the Krylov method (J = 7, nonseparable 
case). Contour is 5 meters. The forcing is a dipole centered at the cross. Negative areas are shaded. 

The convergence rates do not depend on the initial guess and four iterations are 
enough to achieve a good precision. 

The convergence of the solution in a higher truncation case (J= 15,9 levels) is 
illustrated in Fig. 7; m/n is ~0.1 and again it is the high wavenumber part of the 
solution that slows down the convergence. It is necessary to perform 11 iterations 
before reaching small values of the residual norms. 

A typical height field at 300 mb pressure level is plotted on a polar stereograpic 
projection in Fig. 8. Wavetrains are properly developed and they propagate quite 
far from the source. The source is a dipole, centered at the equator. The positive 
center is to the east, while the negative center is to the west of the cross. The two 
centers have a spatial distribution given by Eq. (4.1) and the same amplitude. The 
solution is not entirely different from Hoskins and Karoly [9] results, but the dif- 
ferences due to the asymmetric basic state are not negligible. 

It is important to note that these asymmetric solution could not have been 
obtained by other methods. Since A, especially in the J= 7 case, is probably not 
nonsymmetric positive definite, its spectrum is not contained into one complex half- 
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plane, so simple iteration methods fail. It is interesting to point out that the matrix 
VTA V provides an approximation to the eigenvalues of A [ 151. This information is 
available at the extra cost of computing the eigenvalues of the Hessemberg matrix 
H. Some care should be taken because in the general case it is not possible to con- 
clude that the spectrum of A lies in a half plane if the spectrum of VTA V does. This 
happens only if A is a normal matrix. 

The Arnoldi’s algorithm fills in a gap between direct methods and iteration 
methods. These two extreme cases are two particular limits of the iterative Arnoldi’s 
method. The former is realized when m z n, and the latter when m <n, in this last 
case a scheme very similar to Richardson’s method is obtained. When m <n it is 
not possible to reach a solution for the asymmetric basic state used and with the 
level of dissipation chosen. A fortiori, the Richardson’s method would have met the 
same lack of success. If the ratio m/n is not too small, the Krylov method is capable 
of treating indefinite cases, by realizing a sort of trade off between direct and 
iterative methods. 

5. CONCLUSIONS 

The Krylov subspace method is useful for solving large linear systems resulting 
from the discretization of linear barotropic and baroclinic models. It has the 
capability of expanding the class of treatable basic states by including asymmetric 
flows. Even very large problems, with a total number of degrees of freedom of the 
order of 10000, can be treated satisfactorily. It is particularly effective for problems 
in which the storage is just beyond the capacity of the fast memory of the computer. 

It does not require any explicitly storage of the matrix A, but only calculation of 
the application of the matrix to a vector, Ax, and usually this task may be resolved 
by an external routine. In fact, a time-dependent numerical model provides this 
information by computing the right-hand side of Eq. (2.14) (with f’ = 0), usually in 
the form of a time tendency. It is possible, then, to implement the method by 
modifying a preexisting numerical model without extensive recoding. This is par- 
ticularly desirable in geophysical problems where codes for complicated multilevel 
models have been developed so extensively. The application is not limited to a spec- 
tral model, but it may be applied also to a grid-point model. 

The convergence of the method is controlled by the dissipation terms and by the 
dimension of the Krylov subspace compared to the total space. The dissipation fac- 
tor is more important if the projection is made on a Krylov subspace that is much 
smaller than the total space. In this case the iteration part is more important than 
the projection part and convergence may be limited to nonsymmetric positive 
definite cases. 
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APPENDIX 

We now describe how to obtain Eq. (2.14). We divide the flow fields into the 
time-independent basic state, denoted by the subscript b, and a deviation, denoted, 
for convenience, with the same symbols ([, D, T, q). These splitted variables are 
then inserted in Eqs. (2.3)-(2.11) and, retaining only first order ters in the equations 
for the deviation, we arrive at the explicit form of L= (Li, L,, L,, L,), 

-RT,Vq- RTVq, -E(G)[-K<F’~[, 
I 

- RT,, Vq - RTVq, 
I 

- E(CJ) D - K,V4D - V’d - V’(v v,), 

L,= -?.Vq,-i,.vq-r7.T 

and also 

0 6 
-=-++v-~),~vq+(v-~).vq,-v.v 
P 0 

ACKNOWLEDGMENTS 

(A.1) 

(A.21 

(A.3) 

(A.4) 

I would like to thank my advisor, Dr. Kiku Miyakoda, for his continuous and enthusiastic support 
throughout the development of this work. Many thanks also go to Dr. Ray Pierrehumbert, Dr. Yoshio 
Hayashi, Dr. Suki Manabe, Dr. George Philander, and Dr. Isaac Held, for many useful discussions and 
for their comments on earlier versions of the paper. The pictures were drafted by the Illustration Group 
at GFDL and Ms. Johann Callan skillfully typed the manuscript. During this work I was supported by 
the NSF Grant ATM-8218761. 



162 A. NAVARRA 

REFERENCES 

I. W. B~URKE, Monthly Weather Rev. 102, 683 (1972). 
2. W. BOURKE, Monthly Weather Rev. 102, 887 (1974). 
3. G. BRANSTATOR, J. Atmos. Sci. 40, 1689 (1983). 
4. H. L. CRUTCHER AND J. M. MESERVE, Selecied level heights temperatures and dew points for the 

Norfhern Hemisphere, NAVAIR Atlas SO-IC-52, Chief of Naval Operations, Washington, D.C., 1970 
(unpublished). 

5. V. N. FADDEVA, Compuiational Methods of Linear Algebra (Dover, New York, 1959). 
6. J. S. FREUERIKSEN, Quurt. J. Roy. Meleor. Sot. 104, 841 (1978). 
7. C. T. GORDON AND W. F. STERN, Monthly Wealher Rev. 110, 625 (1982). 
8. W. L. GROSE AND B. J. HOSKINS, J. Atmos. Sci. 36, 223 (1979). 
9. B. J. HOSKINS AND B. J. KAROLY, J. Atmos. Sci. 38, 1179 (1981). 

10. T. A. MANTEUFFEL, Numer. Ma/. 31, 187 (1978). 
I I. R. S. LINDZEN AIU‘D H. L. K~Jo, Monlh/y Wearher Rev. 97, 732 (1959). 
12. A. NAVARRA AND K. MIYAKOVA, in Proceedings of the Sixth Conference on Numerical Weather 

Predic/ion (Omaha, NB. 1983). 
13. S. NIGAM, Ph. D. thesis, Princeton Univ., Princeton, NJ, 1983 (unpublished). 
14. A. RUHE, Linear Algebra Appl. 58, 391 (1984). 
15. Y. SAAD, Linear Algebra Appl. 34, 269 (1980). 
16. Y. SAAD, Math. Comput. 37, 105 ( 1981). 
17. A. SIMMONS, Quart. J. Roy. Me/ear. Sot. 108, 503 (1982). 
18. W. E. AKNOLDI. Quarr. &pi. Math. 9, 17 (1951). 
19. 1. HELD, ‘Stationary and Quasi-stationary Eddies in the Extratropical Troposphere: Theory,” Large 

Scule Dwumics Processes in rhe Atmosphere edited by B. J. Hoskins and R. P. Pearse (Academic 
Press. London. 1983), p. 127. 

20. W. C. GEAR AND Y. SAAD, SIAM J. Scienr. Slat. Comp. 4, 583, (1983). 
21. H. C. ELMAN, in Proceedings of the Elliptic Problem Solvers Conference, MonrerJj, CA, 1983, edited 

by G. BirkhofT and A. L. Schoenstadt (Academic Press, London, 1984). 
22. Y. SAAU, Math. Comput. 44, 417 (1985). 
23. A. E. GILL, Quarl. J. Rex. Meteor. Sot. 105, 447 (1980). 
24. W. L. GROSE, W. T. BLACKSHEAR, AND R. E. TURNER, Quarf. J. Roy. Meteor. Sot. 110, 981 (1984). 


